Erhöhung der Manageability durch SQL-Profile

Ein Erfahrungsbericht

Inhalt

- 1. Problemstellung
- 2. Der SQL-Tuning-Advisor (STA)
- 3. Anlegen und Implementieren von SQL-Profilen
- 4. Alternative Stored Outlines
- 5. Beispiele
- 6. Best Practice
- 7. Fazit

Problemstellung

Der DBA sieht sich oft in der Situation, daß er Perfomanceprobleme diagnostiziert, ja sogar die Lösung kennt, diese aber nicht anwenden kann, weil er keine SQL-Statements und/oder Initialisierungsparameter ändern kann bzw. darf. Auf die einen hat er keinen Zugriff, bei Änderung der anderen verliert er unter Umständen den Support. Besonders bemerkbar macht sich das Problem bei Release-Upgrades der Datenbank.

Beispiel: Migration Oracle eBusiness Suite 11.5.9 von Datenbank 9.2 nach 10.2

- Ø Kontraproduktive Hints: ordered, rule etc.
- Ø Vorgeschriebene suboptimale Parameterwerte: z.B. CURSOR_SHARING, OPTIMIZER_INDEX_COST_ADJ

Frage: Kann der SQL Tuning Advisor hier helfen?

Der SQL Tuning Advisor

- Ø Neu in Oracle 10g
- Ø Bestandteil des Tuning Packs (separat zu lizenzieren!!!)
- Funktionsweise: Cost Based Optimizer im Tuning Mode (comprehensive mode) = mit vom Anwender konfigurierbarem Zeitlimit

Bedienbar über:

- Package DBMS_ADVISOR
- Package DBMS_SQLTUNE
- Skript \$ORACLE_HOME/rdbms/admin/sqltrpt.sql

Empfehlungen des SQL Tuning Advisor

- Ø Auflistung von Objekten in den untersuchten SQL-Anweisungen, die keine oder veraltete Statistiken haben.
- **Ø**Empfehlungen für die Reformulierung der SQL
- Ø Hinweise für bessere Ausführungspläne. Diese können dann als SQL-Profil implementiert werden. Dazu ist keine Änderung der SQL oder von Parametern nötig!

Die Empfehlungen werden nicht automatisch implementiert!

Anlegen und Implementieren von SQL-Profilen

1. Ermittlung des Input für den STA – Mögliche Quellen sind

Manuelle Eingabe

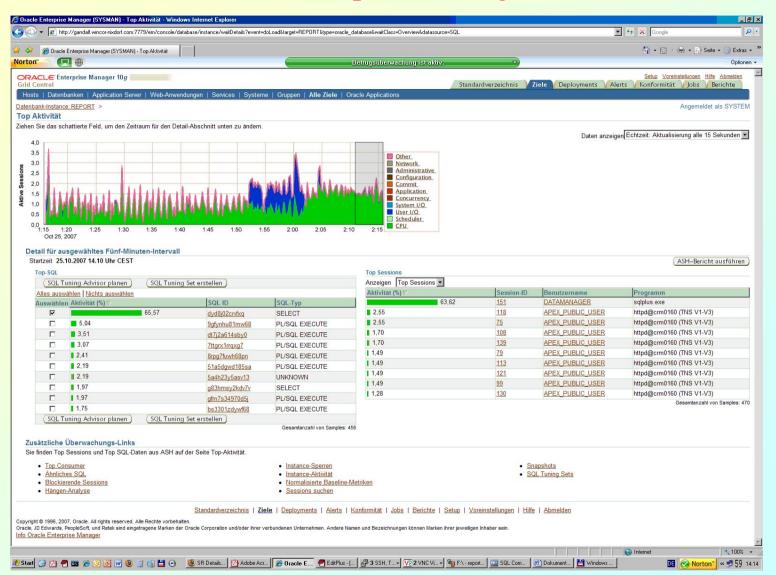
Cursor Cache (v\$sql)

Top-Activity-Seite im Enterprise Manager

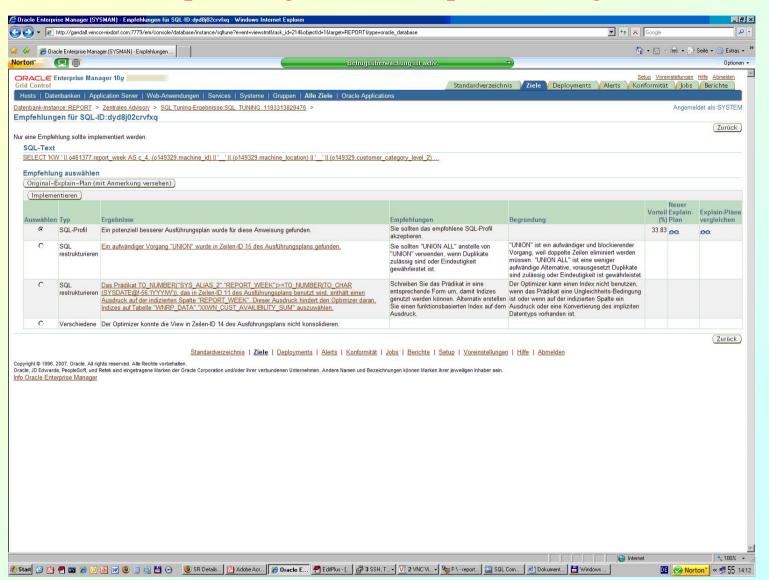
Active Session History (ASH)

Output des Automatic Database Diagnostic Monitor (ADDM)

Snapshots des Automatic Workload Repository (AWR)


- 2. Erstellung eines Tuning Task mit DBMS_SQLTUNE.CREATE_TUNING_TASK
- 3. Ausführen des Tuning Task mit DBMS_SQLTUNE.EXECUTE_TUNING_TASK
- 4. Anzeigen des Reports

 DBMS_SQLTUNE.REPORT_TUNING_TASK
- 5. Implementieren
 DBMS_SQLTUNE.ACCEPT_SQL_PROFILE


Spezielle Einstellungen

- ØBildung von SQL Tuning Sets (STS): Berücksichtigung von Abhängigkeiten
- **ØSQL-Profile sind kategorisierbar** (Standardkategorie DEFAULT): Reaktion auf verschiedene Lastsituationen
- ØEs kann in der SQL mit Bindevariablen gearbeitet werden (Parameter bind_list von DBMS_SQLTUNE.CREATE_TUNING_TASK).
- ØMan kann einstellen (Parameter force_match => TRUE in DBMS_SQLTUNE.ACCEPT_SQL_PROFILE), daß Anweisungen, die sich nur durch Literale unterscheiden, den gleichen Ausführungsplan verwenden. Dadurch wird für die einzelne Anweisung die Einstellung von CURSOR_SHARING = EXACT praktisch ignoriert.

SQL Profile im Enterprise Manager erstellen

Empfehlungen im Enterprise Manager

Zur Beachtung

Nach Implementierung von SQL-Profilen wird zur Laufzeit trotzdem der CBO im Normalmodus verwendet.

Das Verfahren ist im Gegensatz zu Stored Outlines flexibel, d.h. wenn sich die Bedingungen gravierend ändern, kommt unter Umständen auch ein anderer Ausführungsplan zur Anwendung!

Daraus ergibt sich:

Wenn sich die Antwortzeit signifikant verschlechtert, muß der STA erneut ausgeführt werden.

Vergleich mit Stored Outlines

Anstelle von SQL-Profilen können Ausführungspläne als Stored Outline im Data Dictionary abgelegt werden. Auch diese können kategorisiert werden. Der Workflow ist folgender:

- Der problematische Parameter wird auf einen nicht unterstützten Wert gestellt.
- Für die SQL wird ein Stored Outline erzeugt.
- Der Parameter wird zurückgestellt.
- Die Verwendung des Stored Outline wird eingeschaltet.

Der Vorteil gegenüber den SQL-Profilen ist, daß sich die Ausführungspläne im laufenden Betrieb nicht ändern können. Die SQL wird *immer* nach dem gleichen Plan ausgeführt, solange das Outline nicht geändert, überschrieben, gelöscht oder seine Verwendung unterdrückt wird.

Nachteile von Stored Outlines

- Parameter müssen für die Erstellung des Outline wenigstens zeitweise geändert werden.
- SQL muß geändert werden, da z.B. Hints bei der Outline-Erstellung greifen. (Widerspricht der Aufgabenstellung)
- Ø Es gibt keine Möglichkeit, das Cursor Sharing ohne dauerhafte Änderung des Parameters CURSOR_SHARING zu erzwingen.
- Der Optimizer arbeitet bei der Erstellung der Outlines nur im Normalmodus, d.h. er findet gegebenenfalls nicht den besten Ausführungsplan. Es hat sich gezeigt, daß die Kosten für die Ausführung des vom STA generierten Plans deutlich geringer sein können als die für die Ausführung des Stored Outline.

STA: Allgemeine Angaben

Statement:

```
SELECT /*+NO_INDEX(MITARBEITER MITARB_PK) */ *
FROM mitarbeiter WHERE mitarbeiter_nr = 1001;
```

Empfehlung STA:

```
DBMS_SQLTUNE.REPORT_TUNING_TASK('NEW_TASK')
```

GENERAL INFORMATION SECTION

Tuning Task Name : new_task
Tuning Task Owner : SCOTT

Scope : COMPREHENSIVE

Time Limit(seconds) : 600

Completion Status : COMPLETED

Started at : 08/28/2007 10:12:32 Completed at : 08/28/2007 10:12:33

Number of SQL Profile Findings : 1

Schema Name: SCOTT

SQL ID : dcb7dx00j744v

SQL Text : SELECT /*+NO_INDEX(MITARBEITER MITARB_PK) */ * FROM mitarbeiter

WHERE mitarbeiter_nr = 1001

STA: Beispiel SQL-Code (Irreführender Hint)

FINDINGS SECTION (1 finding) 1- SQL Profile Finding (see explain plans section below) Recommendation (estimated benefit: 49,97%) - Sie sollten das empfohlene SOL-Profil akzeptieren. execute dbms sqltune.accept sql profile(task name => 'new task', replace => TRUE); EXPLAIN PLANS SECTION 1- Original With Adjusted Cost Id Operation | Name | Rows | Bytes | Cost (%CPU) 2- Using SQL Profile Id | Operation | Name | Rows | Bytes | Cost (%CPU) 1 | 39 | 1 (0) 0 | SELECT STATEMENT 1 | TABLE ACCESS BY INDEX ROWID | MITARBEITER | 1 | 39 | 1 (0)

* 2 | INDEX UNIQUE SCAN | MITARB_PK | 1 | 0 (0)

Beispiel Parameter OPTIMIZER_INDEX_COST_ADJ

1. Original (51 Zeilen) - OPTIMIZER_INDEX_COST_ADJ = 100

Id Operation	Name Rows Bytes Cost (%CPU)
0 SELECT STATEMENT	1 333 8878 (1)
* 45 TABLE ACCESS FULL	tab 1363K 41M 8521 (1)

2. Mit SQL-Profil (65 Zeilen) - OPTIMIZER_INDEX_COST_ADJ = 100

Id Operation	Name	Rows	Bytes	Cost	(%CPU)
0 SELECT STATEMENT		1	333	117	(3)
* 53 TABLE ACCESS BY INDEX ROWID * 54 INDEX RANGE SCAN	tab ind		: :	3 2	(0)

3. Zum Vergleich Stored Outline (52 Zeilen) - OPTIMIZER_INDEX_COST_ADJ = 10

Id Operation		Name	Rows		Bytes		Cost (%CPU)
0 SELECT STATEMENT			200		66600		1840	(1)
* 36 TABLE ACCESS BY INDEX ROWID		tab	1		32		1	(0)
* 46 INDEX RANGE SCAN		ind	1				1	(0)

Beispiel OPTIMIZER_FEATURES_ENABLE

euer Explain-Plan mit SQL-Profil								Original-E	xplain-Plan (mit Anmerkung v	erseher)					
lle einblenden Alle ausblenden								Gibt ei	ne Anpassung von dem Origin	nalplan	durch SQL Tuning Advisor an	a united				
	Zeilen ID		Ohiolettus	. Daibenfales i		Größe	Kostenfakto	Als Nächstes folgt der Original-Explain-Plan für die SQL-Anweisung, die optimiert wird. Alte einblenden Alle ausblenden								
organg SELECT STATEMENT	0	Objekt	Овјектур	Reihenfolge			19.797	kto Alle emblenden Alle ausbienden							Größe	
SORT ORDER BY	1			15			19.797	Vorgang		Zeilen ID		Objekttyp F	Reihenfolge Ze	eilen	(KB) K	ostenfa
▼ VIEW	2			13			19.797			0		,,-	16	1	0,240	0.72
▼ WINDOW SORT	3			12			19.796	▼ so	RT ORDER BY	1			15	1	0.240	0 72
▼ SORT GROUP BY	4			11		0,238	19.796	1						- ;		
▼ FILTER	5			10		0,230	13.730	▼VIEW		2			14	1	0,240	o 7:
▼ NESTED LOOPS	-			9	1	0,238	19.794	,		3			13	1	0,238	o 72
OUTER				•	'	0,230	10.104			4			12	1	0,238	o 7:
	7			6	1	0,185	19.793	▼ FILTER		5			11			
LOOPS ▼ HASH JOIN	1.8			3	1	0.157	19.792		▼ NESTED LOOPS OUTER	6			10	1	0,238	o 7:
TABLE	9	EUL.XXWN_IBASE_PQ	TABLE	1 4		346,474	5.838		▼ NESTED	7			7	1	0,185	0 7:
ACCES: FULL	5								LOOPS ▼NESTED	8			4	- 1	0.157	0.7
TABLE		EUL.XXWN_INCIDENTS_PQ	TABLE	2	10.565	3.248,369	13.953		LOOPS	0			4	- 1	0,157	0 7.
ACCES: FULL	3							TABLE ACCESS				40.565 3.248,369		o 1		
▼ TABLE	11	EUL.XXWN_INCIDENTS_MV		FULL												
ACCESS BY INDEX									▼TABLE ACCESS	10	EUL.XXWN_IBASE_PQ	TABLE	3	1	0,077	
ROWID									BY INDEX							
INDEX RANGE	12	EUL.XXWN_INCIDENTS_MV_N1	INDEX	4	1		1		ROWID							
SCAN									INDEX RANGE		EUL.XXWN_IBASE_PQ_N2	INDEX	2	102		
▼ TABLE	13	EUL.XXWN_MATERIAL_MV	TABLE	8	1	0,054	1		SCAN							
ACCESS BY										12	EUL.XXWN_INCIDENTS_MV	TABLE	6	1	0,027	
INDEX ROWID	14	EUL.XXWN MATERIAL MV U2			ACCESS BY											
RANGE	14	EUL.XXVVIN_IVIATERIAL_IVIV_UZ	INDEX	/	1		1	l	INDEX ROWID							
SCAN										13	EUL.XXWN INCIDENTS MV N1	INDEV	5	- 1		
								l	RANGE	13	EUE.XXVIII INCIDENTS IVV IVI	INDLX	3	'		
								l	SCAN							
									▼ TABLE ACCESS BY	14	EUL.XXWN_MATERIAL_MV	TABLE	9	1	0,054	
									INDEX ROWID							
									INDEX RANGE	15	EUL.XXWN_MATERIAL_MV_U2	INDEX	8	1		
									SCAN							

Resultate

SQL-Code:

Die Indexverwendung wurde mit dem Hint no_index unterdrückt. Der STA empfiehlt einen besseren Ausführungsplan mit Indexverwendung. Nach Implementierung des SQL-Profile wird der Index verwendet, ohne daß am Code eine Veränderung vorgenommen werden mußte.

Initialisierungsparameter:

Die *geforderte* Einstellung von OPTIMIZER_INDEX_COST_ADJ = 100 erzwingt einen Ausführungsplan, der einen Full Table Scan durchführt, wo ein Index Scan günstiger wäre. Der STA schlägt einen Ausführungsplan mit Indexverwendung vor. Zusätzlich ändert sich auch die Joinverarbeitung drastisch. Der STA prognostiziert eine Laufzeitverbesserung von mehr als 98%. Die *vorgeschriebene* Einstellung von

OPTIMIZER_FEATURES_ENABLE=10.2.0.3 verlängert bei bestimmten Statements die Antwortzeit von Sekunden bzw. Minuten auf mehrere Stunden. Mit der Anwendung des STA läßt sich ein Ausführungsplan erzeugen, der zu einer akzeptablen Verarbeitungszeit führt.

Nach Implementierung des SQL-Profile wurden die besseren Ausführungspläne verwendet, ohne daß Parameter geändert worden wären.

Workflow zur Verwendung von SQL-Profilen

- 1. Ermitteln der problematischen SQL
- 2. Bilden eines STS (optional)
- 3. Export der aktuellen Schemastatistiken vom Produktivsystem auf das Testsystem
- 4. Anwenden des STA im Tuning Mode auf dem Testsystem
- 5. Implementieren und Test der SQL-Profile auf dem Testsystem
- 6. Speichern der SQL-Profile in einer Staging Table
- 7. Export der Staging Table und Import im Produktivsystem
- 8. Anwenden der SQL-Profile im Produktivsystem
- 9. Überprüfen, ob der durch die SQL-Profile gegebene Performancegewinn auch noch nach längerer Zeit gegeben ist und eventuell erneuter Einsatz des STA

Fazit

SQL-Profile stellen eine sehr gute Möglichkeit dar, mit der Eingangs geschilderten Situation produktiv umzugehen.

Literatur:

- Ø Oracle 10g Release 2 Documentation: Performance Tuning Guide
- Oracle 10g Release 2 Documentation: PL/SQL Packages and Types Reference
- Ø Metalink 262687.1 How to use the Sql Tuning Advisor
- Metalink 271196.1 Automatic SQL Tuning SQL Profile
- Ø Metalink 276103.1 Performance Tuning Using 10g Advisors and Manageability

Dr. Frank Haney info@it-haney.de
Tel.: 03641-210224

